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Abstract. Exposure to element carbon (EC) and NOx is a public health issue that has been gaining 15 

increasing interest, with high exposure levels generally observed in traffic environments e.g., roadsides. 16 

Shanghai, home to approximately 25 million in the Yangtze River Delta (YRD) region in east China, has 17 

one of the most intensive traffic activities in the world. However, our understanding of the trend in 18 

vehicular emissions and, in particular, in response to the strict Covid-19 lockdown is limited partly due 19 

to a lack of long-term observation dataset and application of advanced mathematical models. In this 20 

study, NOx and EC were continuously monitored at a near highway sampling site in west Shanghai for 21 

5 years (2016-2020). The long-term dataset was used to train the machine learning model, rebuilding the 22 

NOx and EC in a business-as-usual (BAU) scenario in 2020. The reduction in NOx and EC attributable 23 

to lockdown was found to be smaller than it appeared because the first week of lockdown overlapped 24 

with the lunar new year holiday, whereas, at a later stage of lockdown, the reduction (50-70%) 25 

attributable to the lockdown was more significant, confirmed by satellite monitoring of NO2. In contrast, 26 

the impact of the lockdown on vehicular emissions cannot be well represented by simply comparing the 27 

concentration before and during the lockdown for conventional campaigns. This study demonstrates the 28 

value of continuous air pollutant monitoring at a roadside on a long-term basis. Combined with the 29 

advanced mathematical model, air quality changes upon future emission control and/or event-driven 30 

scenarios are expected to be better predicted. 31 

1 Introduction 32 

As a response to the Covid-19 outbreak, strict lockdown measures were initiated in major cities across 33 

China in 2020, including the megacity of Shanghai in the Yangtze River Delta (YRD) region  (He et al., 34 

2020; Wang et al., 2020; Dai et al., 2021; Wu et al., 2021). The lockdown measures generally started in 35 

late January and lasted roughly one month, during which normal human activities were constrained 36 

substantially (He et al., 2020; Wang et al., 2020). The lockdown measures, such as shutting down cross-37 

city travel and requiring people to stay at home, were strictly implemented to minimize human activities 38 
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(Zhao et al., 2020; Liu et al., 2020). As a result of these restrictive measures, anthropogenic emissions 39 

of air pollutants, in particular, vehicular emissions, have been found to been reduced substantially as 40 

evidenced by the evolution of NO2 which is routinely measured at the ground air quality monitoring site, 41 

as well as from the satellite monitoring (He et al., 2020; Li et al., 2021; Wu et al., 2021). 42 

The impacts of vehicular emissions of NO2 on public health are significant both through direct harm 43 

on inhalation and as a precursor to secondary pollutants such as ozone and particulate matter (PM) (Lin 44 

et al., 2022b; Lyu et al., 2022; Li et al., 2019; Lu et al., 2019). Although NO2 concentrations are regulated 45 

by air quality standards, limitations of NOx (NO+NO2) emissions are becoming new emission standards 46 

for new vehicles (Grange et al., 2017). In addition to NOx emission, on-road vehicles were also the major 47 

source of primary PM emission, comprising various organic and inorganic species (Lin et al., 2018; 48 

Hallquist et al., 2009; Fuzzi et al., 2015; Lin et al., 2020). As a major component of fine PM with a 49 

diameter of less than 2.5 μm (PM2.5), elemental carbon (EC) or black carbon is emitted a result of 50 

incomplete combustion of fossil fuel (gasoline and diesel) in the internal combustion engine (Lin et al., 51 

2020; Lin et al., 2022a; Jia et al., 2021), with significant health and climate implications (Ramanathan 52 

and Carmichael, 2008; Cappa et al., 2012; Rappazzo et al., 2015). With the recent implementation of 53 

high emission standards (e.g., China IV and V), gasoline vehicles are generally less polluted, in terms of 54 

EC emission when compared to diesel vehicles (Lin et al., 2020; Huang et al., 2022), especially with the 55 

recent implementation of high emission standards (e.g., China IV and V). Gasoline-powered vehicles are 56 

currently comprising over 90% of the total vehicles in China, with the trend of phasing out of vehicles 57 

with old emission standards (i.e., China I–III) (Wang et al., 2019; Wang et al., 2022a). Nevertheless, on-58 

road vehicular emissions are still one of the major sources of NOx and EC in urban China (Zheng et al., 59 

2018; Zhang et al., 2019). Moreover, the total vehicular emission is also impacted by traffic mix and 60 

volume, vehicle ages, and vehicle speed, while meteorological variables e.g., wind speed and wind 61 

direction can impact the measured concentrations of air pollutants, making the quantification of vehicular 62 

emission challenging in the real-world ambient environment. 63 

The strict Covid-19 lockdown measures provided a unique opportunity to study the changes in event-64 

driven vehicular emissions, formulating a scientific basis for designing future air quality mitigation 65 

strategies. However, the degree of reduction in vehicular emissions that can be attributable to the Covid-66 

19 outbreak varied greatly in different studies (up to over two-fold differences; (Jia et al., 2020; Wang 67 

et al., 2020; Dai et al., 2021; Wu et al., 2021)). For example, by directly comparing the NOx 68 

concentrations before and during the Covid-19 lockdown period, Jia et al. (2020) found a 56-58% 69 

reduction in NOx during the Covid-19 lockdown period in Shanghai. However, the lockdown period 70 

overlapped with the Chinese Spring Festival holiday (Wang et al., 2020), during which human activities 71 

including traffic were already largely reduced. Moreover, meteorological conditions (e.g., wind speed 72 

and direction) may vary, and, therefore, the direct comparison between two different periods does not 73 

necessarily reflect the trend in emissions. To decouple the meteorological effects, a meteorological 74 

normalization or de-weathering process was first proposed by Grange and Carslaw (2019) using a tree-75 

based machine learning algorithm. Vu et al. (2019) developed the de-weathering process to investigate 76 

the seasonal trend of typical air pollutants routinely measured in Beijing and the de-weathered pollutants 77 

showed a good agreement with the primary emission from the emission inventory. Using a similar de-78 
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weathering process and taking into account the holiday effects. Dai et al. (2021) showed that the 79 

reduction (-15.4%) in NO2 attributable to Covid-19 lockdown was, on average, roughly half of the total 80 

reduction (-29.5%) from comparing the measured and counterfactual NO2 in a business as usual (BAU) 81 

scenario during the overlapping period in 31 major Chinese cities. The decline in NO2 attributable to the 82 

lockdowns was also shown to be not as large as expected in 11 cities globally after a de-weathering 83 

process (Shi et al., 2021). However, most of these tree-based machine learning studies did not quantify 84 

the importance of the input variables, making these the machine learning process non-explainable or like 85 

a “black box” (Lin et al., 2022b; Wang et al., 2022a) An explainable machine learning algorithm such as 86 

the SHapley Additive exPlanation (SHAP) can quantify the impact of meteorological variables  87 

(Lundberg et al., 2020; Qin et al., 2022; Wang et al., 2022a). However, few studies have applied the 88 

explainable machine learning algorithm to study the trend in vehicular emissions. Moreover, most 89 

previous studies focused on the changes in the measured NO2 concentrations, which was routinely 90 

measured in air quality monitoring site (He et al., 2020; Wang et al., 2020), while few studies reported 91 

vehicular EC emissions based on long-term (years) measurement, and therefore, limiting our 92 

understanding of vehicular PM2.5 emissions under such a policy intervention and more importantly our 93 

ability to predict future air quality changes upon similar emission control strategies. 94 

Shanghai is an economic center of China, acting as a major transport hub. In 2019, the number of 95 

civilian vehicles was over 4 million in Shanghai, approximately 13% higher than that in 2017 (Ministry 96 

of Transport, 2020). On average, the daily ridership in Shanghai was over 57 million, with the turnover 97 

quantity of motor vehicles of approximately 235 million passenger car unit kilometers (Ministry of 98 

Transport, 2020). Because of the intensive traffic activities, exposure to EC has become a public health 99 

issue that has been gaining increasing interest, with high individual EC exposure levels generally 100 

observed in traffic environments e.g., roadsides (Jia et al., 2021; Zhou et al., 2020). In this study, hourly 101 

EC and NOx were continuously measured for five years (2016-2020) at a near highway sampling site in 102 

west Shanghai. A machine-learning model i.e., random forest, was applied to train the model to rebuild 103 

the measured EC and NOx using meteorological and temporal variables as the model input (Grange et 104 

al., 2018; Grange and Carslaw, 2019; Grange et al., 2021; Wang et al., 2022a). The SHAP algorithm 105 

(Lundberg et al., 2020) was used to quantify the impact of meteorological variables on the measured EC 106 

and NOx. A business-as-usual (BAU) scenario was assumed in 2020 and compared with the measured 107 

EC and NOx, quantifying the reduction attributable to the lockdown measures. Implications of future 108 

emission control measures on vehicular emissions are discussed. 109 

2 Method 110 

2.1 Field sampling 111 

Measurements of the NOx and EC were conducted continuously from 2016 to 2020 (5 years) at a near 112 

highway sampling site at the Dianshan Lake (DSL) supersite (31.09° N,120.98° E, approximately 15 m 113 

above ground), with two highways (G318 and G50) located approximately 1 km west of the sampling 114 

site. The sampling site is located in Qingpu District in western Shanghai (Fig. S1), 50 km west of 115 

downtown Shanghai. It is at the intersection of Jiangsu, Shanghai, and Zhejiang Provinces. Windrose 116 
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analysis showed that the sampling site could be affected by the two nearby highways during both 2016-117 

2019 (normal years) and 2020 with Covid-19 lockdown measures implemented (Figure S2). 118 

Details of the instrument used to measure EC and NOx were provided previously (Jia et al., 2020). 119 

Briefly, EC was measured on an hourly basis using a Sunset Carbon Analyzer (Model RT-4, Sunset Lab, 120 

USA), while hourly NO and NO2 were monitored using a Thermo Scientific gas analyzers (Thermo 42i, 121 

Thermo Fisher Scientific, Massachusetts, USA). Meteorological variables of air temperature (air_temp), 122 

wind direction (wd), wind speed (ws), relative humidity (RH), pressure, and rainfall were measured using 123 

a Vaisala automatic weather station (WXT520, Vaisala Ltd., Finland). 124 

Satellite images of NO2 were obtained from Sentinel-5P Level-3 Near Real-Time dataset based on the 125 

observation of the TROPOspheric Monitoring Instrument (TROPOMI) for 2019 and 2020 (Gorelick et 126 

al., 2017). The spatial and temporal distribution of vertical column densities (molecules cm-2) of 127 

tropospheric NO2 was used to study the changes in vehicular emissions as a response to strict lockdown 128 

measures implemented in 2020. 129 

2.2 Data analysis 130 

2.2.1 Machine learning set-up and validation 131 

A machine learning algorithm - Random Forest (Grange et al., 2018; Wang et al., 2022a; Wang et al., 132 

2022b) was deployed to understand the impact of Covid-19 lockdown on the exhaust emissions from the 133 

near highways in 2020 based on a business as usual (BAU) scenario. NOx and EC were used as a marker 134 

of traffic exhaust emissions as traffic was its main contributor in Shanghai (Jia et al., 2021). In this study, 135 

the diurnal patterns of EC and NOx show typical rush hours peaks during both the normal and Covid-19 136 

lockdown periods, consistent with the emission pattern from traffic (Fig. S3). 137 

Meteorological (ws, wd, air_temp, RH, rainfall, and pressure) and time (date_unix, day of the year, 138 

weekday, hour of the day, and day of the lunar year) variables were used as model inputs to explain the 139 

hourly mean EC and NOx concentrations. The time variable of date_unix is the number of seconds since 140 

1 January 1970. Because the day of the lunar new year is different in the Gregorian calendar, it was 141 

necessary to include the day of the lunar year to better represent the Chinese New Year holiday, which 142 

usually causes a reduction in pollutant concentration during the holiday (Wang et al., 2020; Dai et al., 143 

2021). For each random forest, the number of trees in the forest was set to 300, while a minimal nod size 144 

was set to five following e (Grange et al., 2018). The training and testing split percentages were 80% and 145 

20% of the dataset, respectively. The random forest model was performed using the latest “rmweather” 146 

R package e (Grange et al., 2018). 147 

Validation of the developed Random Forest was performed by comparing the time series of the 148 

predicted and measured NOx/EC for both the testing and training dataset (Table S1, discussed in Sect. 149 

3.3). The time series of the predicted NOx/EC showed a good agreement with the measured ones with 150 

correlation coefficients in the range of 0.89-0.98 and slopes close to unity, suggesting the developed 151 

Random Forest model captured the variation of the target pollutant well. 152 

2.2.2 Quantification of the reduction in pollutants attributable to the Covid-19 lockdown 153 

Based on the developed Random Forest model, the counterfactual NOx and EC concentrations in a BAU 154 

scenario were derived. The BAU scenario assumed everything was the same in 2020 as in the previous 155 

years. Because the random forest captured the variation of the target pollutant better than the multi-linear 156 

https://doi.org/10.5194/egusphere-2023-204
Preprint. Discussion started: 6 April 2023
c© Author(s) 2023. CC BY 4.0 License.



5 

 

regression model (Table S1), the counterfactual NOx and EC concentrations reflected the corresponding 157 

pollutant in a BAU scenario better. The long-term measurements of NOx/EC covered multiple years were 158 

necessary to train the model as a comparison to short-term sampling. The BAU analysis was performed 159 

using a function within the “rmweather” R package (Grange et al., 2018). 160 

The counterfactual NOx/EC concentrations were compared with the measured ones during the holiday 161 

(the first week of the lunar year), transition (from day 8 to Lantern Festival, i.e., day 15), and after the 162 

transition period, when the lockdown measures were most restrictive. The differences between the 163 

counterfactual and measured NOx/EC are regarded as the portion that can be attributable to the Covid-164 

19 lockdown measures (Grange et al., 2021)Specifically, to get the pollutant concentration  in a BAU 165 

scenario, a machine learning model was trained by the data over the previous four years to capture the 166 

variability of pollutant concentrations using the same input variables as detailed in Sect. 2.3.1. After 167 

training, the grown forest was used to predict pollutant concentrations experienced beyond the training 168 

period during the Covid-19 lockdown. As a result, the time series of the predicted pollutant beyond the 169 

training period is a counterfactual, representing the model estimation of pollutant concentrations during 170 

the BAU scenario. The pollutant concentrations in the BAU scenario were subsequently compared with 171 

what was observed, with the differences representing the magnitude of the reduction attributable to the 172 

of Covid-19 lockdown. 173 

2.2.3 Feature importance analysis using the SHAP algorithm 174 

In this study, SHAP (https://github.com/slundberg/shap) was applied to explain the output of the machine 175 

learning model, quantifying the importance of the meteorological variables (Lundberg et al., 2020; 176 

Oukawa et al., 2022). SHAP is a game theoretic approach that connects optimal credit allocation with 177 

local explanations using the classic Shapley values and their related extensions (Lundberg et al., 2020). 178 

SHAP analysis was performed using the python package of SHAP (version 0.41.0) and scikit-learn 179 

(version 1.2.0). 180 

SHAP produced an interpretable machine-learning model using an additive feature attribution 181 

method (Lundberg et al., 2020).  SHAP quantified the contribution of the input meteorological variables 182 

to a single prediction at a specific time, producing a SHAP value in the same unit as the target pollutant. 183 

An overview of which meteorological variables were most important for predicting EC/NOx was 184 

obtained based on the SHAP values of every feature for every time point. The SHAP overview plot sorted 185 

meteoritical variables by the sum of SHAP value magnitudes over the entire sampling period. SHAP 186 

values were obtained to show the distribution of the impacts each meteorological variables had on the 187 

model output. 188 

3 Results and Discussion 189 

3.1 Trend of observed NOx during the holiday period and Covid-19 lockdown 190 

Figure 1a shows the time series of NOx for 4 weeks before and after the start of the Chinese lunar new 191 

year for 5 years (2016-2020) measurement at the near highway sampling site in west Shanghai (Fig. S1). 192 

To understand the impact of the Covid-19 lockdown measurements on traffic emission, we focus on the 193 

NOx time series in 2020 in comparison to the averaged time series of NOx (grey line) for the previous 194 
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four years (i.e., the mean of 2016-2019). The beginning of the 2020 lockdown, starting on January 24, 195 

overlapped with the start of the Chinese New Year holiday when human activities have already been 196 

reduced to a large extent as most migrant workers leave the city for their hometowns. Therefore, the 197 

holiday effects need to be taken into account when evaluating the impact of the national lockdown 198 

measures on the measured pollutants at the near highway sampling site. 199 

For 2016-2019, a large reduction in NOx was seen during the 7-day holiday period when compared to 200 

before the holiday. After the holiday, NOx levels started to bounce back during the transition period (i.e., 201 

the period before the lantern festival at DOY 15) and finally reached a similar level after the transition 202 

period when compared to that before the holiday (Fig. 1a).  Specifically, before the holiday, the mean 203 

concentration of NOx was 72.8 μg m-3, while, during the holiday, NOx concentration was 22.6 μg m-3. 204 

After the holiday, the NOx levels increased from 42.6 μg m-3 during the transition to 60.6 μg m-3 after 205 

the transition period. Assuming a scenario without the holiday effect, as represented by the arrow line in 206 

Fig. 1b, a reduction of approximately 65% (or 43 μg m-3) in the observed NOx concentration was seen 207 

during the holiday when compared to that before the holiday (72.8 μg m-3) for 2016-2019. 208 

Similar to 2016-2019, the observed NOx in 2020 was also largely reduced (60%) during the holiday 209 

period when compared to before the holiday (Fig. 1b). Specifically, the NOx before the holiday was 79.5 210 

μg m-3, while it was 29.0 μg m-3 during the holiday. Because the Covid-19 lockdown started on the same 211 

day as the holiday, the reduction in NOx observed at the sampling site attributable to the lockdown 212 

measures was smaller than it appeared. In other words, simply comparing the air pollutant concentration 213 

during the first 7-day of lockdown to that before the lockdown would overestimate the impact of Covid-214 

19 on the measured air pollutant when holiday effects were strong. 215 

However, NOx remained at low levels during the transition and after the transition period in 2020, i.e., 216 

the last two weeks during the lockdown, instead of rapidly rising as observed in 2016-2019 (Fig. 1). The 217 

mean concentration during the transition period was 32.6 μg m-3 and was 34.8 μg m-3 for the last two 218 

weeks during the lockdown in 2020, which was 25% and 50% lower, respectively, when compared to 219 

the same period for 2016-2019. Because it usually takes some time for the control measure to take effect, 220 

focusing on the first 7-day of the lockdown may not represent the true impact of the Covid-19 lockdown 221 

on air quality. Instead, as the lockdown measures took effect, a large reduction in NOx can be seen at the 222 

late stages of the lockdown when NOx was supposed to be increasing. Therefore, we focused on the 223 

comparison of NOx during the last two weeks of the lockdown (labeled as “lockdown” in Fig. 1 and 224 

afterward if not specified otherwise) to study the impact of lockdown measures on traffic emission at 225 

this sampling site. 226 

3.2 Observed EC reduction attributable to the lockdown control policies 227 

The measured EC at the near highway sampling site showed a diurnal pattern with a clear morning 228 

rush hour peak, consistent with that for NOx (Fig. S3), suggesting EC was mainly affected by the nearby 229 

traffic. The measured EC also showed a dependence on wind speed and wind direction, with a higher 230 

concentration associated with low wind speed from the southwest direction, i.e., from the highway (Fig. 231 

S4). The conclusion of EC being mainly from traffic is consistent with previous source apportionment 232 

studies in Shanghai (Chang et al., 2018; Jia et al., 2021). 233 
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Figure 2 shows the time series of EC before and during the 2020 lockdown as well as the average time 234 

series of EC (grey line) for the previous four years (i.e., the mean of 2016-2019). Similar to NOx, the 235 

2016-2019 EC level during the holiday was reduced due to the reduced traffic (Fig. 2). Specifically, the 236 

mean EC concentration was 1.08 μg m-3 during the holiday, roughly 40% lower compared to that (1.74 237 

μg m-3) before the holiday. During the transition period for 2016-2019, EC increased to 1.03 μg m-3. 238 

Afterward, EC increased to 1.53 μg m-3, very close to the levels before the holiday. 239 

For the 2020 CNY holiday or the first week of the Covid-19 lockdown, EC was also reduced to a 240 

similar level (0.88 μg m-3) as 2016-2019 (1.08 μg m-3; Fig. 2). Similar to NOx, the EC reduction 241 

attributable to the lockdown measures was not as large as it appeared for the period overlapping with the 242 

holiday. However, EC remained at a low level during (0.92 μg m-3) and after the transition (0.78 μg m-3) 243 

period. This is because the month-long lockdown measures kept the traffic at a low level for a prolonged 244 

time. This is consistent with the pattern observed for NOx, further confirming the measured EC and NOx 245 

at this near highway sampling site were mainly from traffic emissions. The mean EC concentration 246 

during the transition period or roughly the second week of lockdown in 2020 was 10 % lower than the 247 

same period for 2016-2019, while the mean EC concentration during the last two weeks of lockdown 248 

was 50% lower than the same period for 2016-2019. The low level of EC during and after the transition 249 

period was due to the lockdown measures, reducing the traffic volume and, therefore, reducing the 250 

corresponding traffic-related EC emission. 251 

3.3 Rebuilding the measured NOx and EC using a machine learning algorithm 252 

The measured mass concentrations of atmospheric NOx and EC were affected by the meteorological 253 

variables including wind speed and wind direction (Fig. S4). This is particularly true for multiple years 254 

of measurement when the meteorological variables varied over these years. Therefore, the concentration 255 

measured at different years was not directly comparable when meteorological variables were varying in 256 

addition to emission strength across years. Moreover, the relationship between the measured NOx/EC 257 

and meteorological conditions was not linear. This is demonstrated by the poor correlation coefficient 258 

(R=0.45-0.48) between the rebuilt NOx/EC and the meteorological parameters using the multilinear 259 

regression model (Table S1). Therefore, the multilinear regression model failed to rebuild the measured 260 

NOx/EC satisfactorily. In this study, the non-linear relationship between NOx/EC and the meteorological 261 

variables was captured by a machine learning algorithm - random forest (See the method section).  262 

Figure 3a shows the scatter plot between the time series of the rebuilt and measured NOx for the 263 

training and testing dataset.  The predicted NOx was well correlated with the measured NOx with a 264 

correlation coefficient (R) of 0.89-0.98, suggesting over 80 % of the data (R2 >0.8) can be explained by 265 

the machine learning model. This value is higher than that from the multilinear regression model (Table 266 

S1). Therefore, the machine learning model demonstrated a better performance than the multilinear 267 

regression model in capturing the relationship between the NOx and meteorological variables. 268 

Figure 3b shows the scatter plot between the time series of the predicted and measured EC for the 269 

training and testing dataset. Similar to NOx, the rebuilt EC was well correlated with the measured EC 270 

with a correlation coefficient (R) of 0.9-0.98, suggesting over 80 % of the EC can be explained by the 271 

machine learning model. However, for both NOx and EC, the slope for the linear fit was in the range of 272 
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0.67-0.85, suggesting the predicted values were, on average, 13-33% lower than the measured values. 273 

By examining the data, the lower than unity slope was mainly caused by the data points with high 274 

concentrations. These data points can be regarded as outliers that were not captured properly by the 275 

machine learning model since these data points deviated largely from the averaged values. 276 

In this study, meteorological variables were used as input variables to train the machine learning model 277 

to rebuild the observed NOx and EC. However, different meteorological variables had different roles in 278 

affecting the measured NOx and EC, showing different levels of importance. To evaluate the importance 279 

of different meteorological variables, SHAP model was applied (See method section). Figure 4 shows 280 

the SHAP values (in μg m-3) obtained during the rebuilding of NOx and EC. The meteorological variable 281 

with a high SHAP value was associated with high importance, whereas a SHAP value closer to zero 282 

means the meteorological variable was less important. For NOx, ws is the most important meteorological 283 

variable (Fig. 4), with low ws contributing up to over 100 μg m-3 and high ws contributing negatively to 284 

NOx (down to -40 μg m-3).  Air temperature, RH, wd, and pressure had SHAP values in the range of -40 285 

μg m-3 to 70 μg m-3, while rainfall was least important with SHAP values of <10 μg m-3 (Fig. 4). Similarly, 286 

ws was also the important variable for EC, with low ws contributing positively to the EC (SHAP value 287 

of up to over 2 μg m-3, Fig. 4). Wd, pressure, air temperature, and RH had similar SHAP values (<1.5 μg 288 

m-3). Although rainfall was less important, high rainfall was associated with low SHAP values, consistent 289 

with the wet deposition of aerosol. 290 

3.4 Trend of meteorologically normalized NOx and EC: a business-as-usual scenario 291 

To evaluate the impact of the lockdown in 2020 on the NOx/EC emission at this near highway sampling 292 

site, a business-as-usual (BAU) scenario was assumed. The BAU scenario in 2020 assumed that 293 

everything was similar to what would happen previously, i.e., without the lockdown measures. For the 294 

BAU scenario in 2020, NOx and EC would drop during the holiday, but increase their concentration 295 

levels during the transition and reach a similar level to that before the holiday (Fig. 5), similar to that 296 

observed in 2016-2019 (Fig. 1 and 2). Through the comparison of the 2020 BAU to the measured 297 

NOx/EC in 2020, the reduction in NOx/EC attributable to Covid-19 can be quantitatively evaluated. 298 

The NOx and EC concentrations during the holiday, transition, and lockdown period were normalized 299 

to that before the holiday (Fig. 5). For BAU in 2020, the NOx during the holiday was reduced to 53% of 300 

the level for that before the holiday. In comparison, the measured NOx during the holiday was 36% of 301 

the level before the holiday. Therefore, the difference (17%) between BAU-2020 and 2020 was 302 

attributable to the Covid-19 control measures. In other words, the measured NOx was roughly 30% 303 

(17%/53%) lower than what would be without the control measures. During the transition period, the 304 

NOx level for BAU-2020 returned to ~75% of the level before the holiday. In comparison, the measured 305 

NOx was only 40% of that before the holiday. Therefore, the measured NOx was approximately 45% 306 

lower than the BAU-2020. After the transition period, NOx returned to a similar level to that before the 307 

holiday for BAU-2020. However, the measured NOx was only 40% of that before the holiday. As a result, 308 

the NOx reduction attributable to the Covid-19 lockdown measures was the most significant after the 309 

transition period, which was approximately 60% of the BAU-2020. Therefore, the month-long lockdown 310 
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measures kept the NOx at a low level consistently, demonstrating the effectiveness of the lockdown in 311 

reducing traffic emissions as the lockdown measures continued. 312 

Similar to NOx, EC also showed the largest reduction during lockdown when compared to the BAU 313 

2020 (Fig. 5b). Specifically, EC was roughly 60% lower during the lockdown in 2020 than the BAU 314 

scenario in 2020, while the reduction in EC was 40% and 30% lower during the transition and holiday 315 

period, respectively. As a result, both NOx and EC showed a similar level of reduction which were 316 

attributable to the lockdown measures. 317 

3.5 Reduction in traffic emission during the Covid-19 lockdown confirmed by satellite monitoring 318 

Figure 6 shows the TROPOMI images of NO2 in the YRD region over the same period, i.e., before the 319 

holiday and after the transition, for the years 2019 and 2020. By comparing the vertical column densities 320 

of NO2 monitored over the same period in 2019 and 2020, the evolution of satellite-monitoring of NO2 321 

showed a consistent trend with that observed from the ground monitoring at the near highway sampling 322 

site (Fig. 1-3). In particular, a great reduction (50-70%) in NO2 during the lockdown period in 2020 was 323 

seen when compared to that over the same period in 2019, whereas after the transition period in 2020, 324 

NO2 was expected to return to a similar level as that before the holiday i.e., the BAU scenario discussed 325 

in Sect 3.4. Therefore, the reduction (50-70%) in NO2 in 2020 was attributable to the lockdown measures 326 

based on the knowledge gained from the surface monitoring site. 327 

Specifically, the vertical column concentration of NO2 at the DSL was highly elevated before the 328 

holiday in 2019 with mean vertical column concentrations of over 18×1015 molecules cm-2. After the 329 

transition period in 2019, NO2 returned to a slightly lower value (16-18×1015 molecules cm-2) compared 330 

to that before the holiday. This is consistent with BAU scenario assumed in 2020 (Fig. 5). In 2020, NO2 331 

before the holiday was similar to the level over the same period in 2019 (18-20×1015). However, during 332 

the lockdown period, the NO2 was 8-10×1015, 50-70% lower than in the same period in 2019. Such a 333 

reduction was attributable to the lockdown measures. 334 

4 Discussion 335 

Through the comparison of EC and NOx before and during the lockdown in 2020, as well as the same 336 

period in the previous years (2016-2019), we showed that the reduction in vehicular emissions that can 337 

be attributed to the lockdown measures was complicated and cannot be achieved by simply comparing 338 

the concentration difference between before and during the lockdown. This is because vehicular 339 

emissions have their own trend during the Chinese holiday when vehicular emission was largely reduced 340 

(Dai et al., 2021). Here, we show that, due to the overlapping of the first week of lockdown with the 341 

holiday, the reduction in vehicular emission attributable to the lockdown was smaller than it appeared. 342 

This trend can be only revealed from multiple years of continuous measurement and would be easily 343 

missed by a conventional field campaign that only lasted months. This is consistent with the previous 344 

studies (Shi et al., 2021; Dai et al., 2021; He et al., 2020). However, in addition to the holiday effects, 345 

we showed that the reduction in vehicular emission was nearly entirely attributable to the lockdown at a 346 

later stage of lockdown, whereas the holiday and transition period only lasted for 2 weeks.  347 
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The lockdown in Shanghai 2020 provided a unique opportunity to study the impact of strict emission 348 

control on local and regional air quality. Many studies have shown the impact of lockdown on traffic 349 

emission, but with different degrees of impact partly because the duration of the lockdown was month-350 

long and partly overlapped with the holiday as shown in this study (Jia et al., 2020; Dai et al., 2021; Shi 351 

et al., 2021; Wang et al., 2020). However, most previous studies focused on gas pollutant i.e., NO2 352 

probably because NO2 was a regular gas pollutant that is routinely measured at the air quality monitoring 353 

sites across the major Chinese cities (He et al., 2020), while few reported the particulate EC emission 354 

from traffic partly due to the scarcity of the dataset. EC is light absorbing and is regarded as a warming 355 

agent second to CO2 (Cappa et al., 2012; Jacobson, 2001; Liu et al., 2015). In addition, EC is one of the 356 

major particulate pollutants that can cause adverse health effects (Daellenbach et al., 2020; Rappazzo et 357 

al., 2015).  To the best of our knowledge, this is the first study to illustrate the impact of lockdown on 358 

vehicular EC emissions at a near highway sampling site based on 5-years of continuous measurement. 359 

Such a dataset is rare in the literature since lockdown measures restrict the movement of instrument 360 

operators. Only with good maintenance of the instrument at the sampling site can we keep the sampling 361 

going on during the strict lockdown.  362 

To decouple the effects of the meteorological variables on the measured NOx and EC, a machine 363 

learning model was trained and tested based on the 5-year dataset. The machine learning model emerges 364 

as a powerful model in air quality studies especially the development of SHAP (Lundberg et al., 2020) 365 

making the machine learning model explainable rather than a black box as in most previous air quality 366 

studies (Grange and Carslaw, 2019; Grange et al., 2017; Shi et al., 2021; Vu et al., 2019). The explainable 367 

machine learning model of SHAP showed meteorological variables especially ws and wd were key 368 

parameters that affect the measured levels with concentrations of up to 100 μg m-3 for NOx. Due to 369 

important the role of meteorological variables, their impact needs to be removed when evaluating the 370 

true impact of the lockdown on vehicular emissions. Here, instead of simply comparing the concentration 371 

before and during the lockdown, a BAU scenario was assumed in 2020. This relies on the rebuilding 372 

power of the mathematical model. However, to train the machine learning model, a large body of datasets 373 

is required as input. As more datasets are to be collected and used as model input, the performance of 374 

machine learning is expected to improve further. Moreover, with more variables, e.g., vehicular types, 375 

weight, and road conditions, being monitored and used as input for the model, a better prediction power 376 

of the machine learning is anticipated. Correspondingly, the air quality improvement upon future 377 

emission control scenarios can be better predicted. 378 

5 Conclusion 379 

In this study, the time series of vehicular emissions of NOx and EC before and during the 2020 lockdown 380 

as well as the averaged time series of NOx over the same period for the previous four years (i.e., the mean 381 

of 2016-2019) were compared and used to train the machine learning model, rebuilding the NOx and EC 382 

in a BAU scenario in 2020. Meteorological variables especially wind speed and direction were found to 383 

be the key parameters that affect the measured levels with concentrations of up to 100 μg m-3 for NOx 384 

using the explainable machine learning model of SHAP. Due to important the role of meteorological 385 

variables, their impact needs to be removed when evaluating the true impact of the lockdown on vehicular 386 
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emissions. In contrast, by simply comparing the concentration before and during the lockdown, the 387 

effects of the lockdown on air pollutant emission can be misrepresented. The results show that vehicular 388 

emissions had their own trend during the Chinese holiday during which vehicular emission was largely 389 

reduced. Because the first week of lockdown overlapped with the holiday, the reduction in vehicular 390 

emissions attributable to the lockdown was smaller than it appeared. This is in line with previous studies 391 

that took into account the holiday effects using a machine learning based de-weathering process. 392 

However, different from previous studies, a large reduction (50-70%) in vehicular emissions of NOx and 393 

EC was attributed to the lockdown at a later stage. This value is larger than previous studies because both 394 

the holiday effects and meteorological impacts were removed during this period. This large reduction in 395 

vehicular emissions at a later stage was confirmed by satellite monitoring of NO2. Therefore, strict 396 

lockdown reduced both vehicular gaseous and particulate emission significantly when holiday and 397 

meteorological effects were not affecting the trend analysis. This study demonstrates the importance of 398 

continuous monitoring at this Shanghai supersite. When coupled with an advanced mathematical 399 

algorithm, insights into the impact of human activities on air pollution can be gained based on long-term 400 

monitoring. Air quality improvement in future emission control scenarios is expected to be better 401 

predicted. 402 

Associate content 403 

Supporting Information 404 
Supplementary figures (Fig. S1-S4). 405 

Credit authorship contribution statement 406 

MW, ZZ, XL and SH designed the study. YD, JH, JC, YL and QF conducted field campaign. MW, YD, 407 

ZZ and QY conducted data analysis. MW prepared the manuscript with contributions from all co-authors. 408 

QF, TW, JC and SL provided input for revision before submission. QF and SL provided project guidance. 409 

Declaration of competing interest 410 

The authors declare that they have no conflicting interests. 411 

Acknowledgements 412 

This work was supported by the Start-up Fund for RAPs under the Strategic Hiring Scheme (P0043854), 413 

Green Tech Fund (GTF202110151), Environment and Conservation Fund-Environmental Research, 414 

Technology Demonstration and Conference Projects (ECF 63/2019), the RGC Theme-based Research 415 

Scheme (T24-504/17-N), the RGC Theme-based Research Scheme (T31-603/21-N), Key Research and 416 

Development Projects of Shanghai Science and Technology Commission (20dz1204000), State Ecology 417 

and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan 418 

Lake (SEED).419 

https://doi.org/10.5194/egusphere-2023-204
Preprint. Discussion started: 6 April 2023
c© Author(s) 2023. CC BY 4.0 License.



12 

 

References 

Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., 

Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A., Lerner, B. M., Li, S.-M., Mellon, 

D., Nuaaman, I., Olfert, J. S., Petäjä, T., Quinn, P. K., Song, C., Subramanian, R., Williams, E. J., and 

Zaveri, R. A.: Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black 

Carbon, Science, 337, 1078-1081, https://doi.org/10.1126/science.1223447, 2012. 

Chang, Y., Huang, K., Xie, M., Deng, C., Zou, Z., Liu, S., and Zhang, Y.: First long-term and near real-

time measurement of trace elements in China's urban atmosphere: temporal variability, source 

apportionment and precipitation effect, Atmospheric Chemistry and Physics, 18, 11793-11812, 

https://doi.org/10.5194/acp-18-11793-2018, 2018. 

Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, 

F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, 

J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.-L., and Prévôt, A. S. H.: Sources of 

particulate-matter air pollution and its oxidative potential in Europe, Nature, 587, 414-419, 

https://doi.org/10.1038/s41586-020-2902-8, 2020. 

Dai, Q., Hou, L., Liu, B., Zhang, Y., Song, C., Shi, Z., Hopke, P. K., and Feng, Y.: Spring Festival and 

COVID-19 Lockdown: Disentangling PM Sources in Major Chinese Cities, Geophysical Research 

Letters, 48, e2021GL093403, https://doi.org/10.1029/2021GL093403, 2021. 

Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier Van Der Gon, H., Facchini, M., Fowler, 

D., Koren, I., Langford, B., and Lohmann, U.: Particulate matter, air quality and climate: lessons learned 

and future needs, Atmospheric Chemistry and Physics, 15, 8217-8299, https://doi.org/10.5194/acp-15-

8217-2015, 2015. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: 

Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 202, 18-27, 

https://doi.org/10.1016/j.rse.2017.06.031, 2017. 

Grange, S. K. and Carslaw, D. C.: Using meteorological normalisation to detect interventions in air 

quality time series, Science of The Total Environment, 653, 578-588, 

https://doi.org/10.1016/j.scitotenv.2018.10.344, 2019. 

Grange, S. K., Lewis, A. C., Moller, S. J., and Carslaw, D. C.: Lower vehicular primary emissions of 

NO2 in Europe than assumed in policy projections, Nature Geoscience, 10, 914-918, 

https://doi.org/10.1038/s41561-017-0009-0, 2017. 

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest meteorological 

normalisation models for Swiss PM10 trend analysis, Atmospheric Chemistry and Physics, 18, 6223-

6239, https://doi.org/10.5194/acp-18-6223-2018, 2018. 

Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., and Carslaw, D. 

C.: COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas, 

Atmospheric Chemistry and Physics, 21, 4169-4185, https://doi.org/10.5194/acp-21-4169-2021, 2021. 

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., 

Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., 

https://doi.org/10.5194/egusphere-2023-204
Preprint. Discussion started: 6 April 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. 

F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The 

formation, properties and impact of secondary organic aerosol: current and emerging issues, 

Atmospheric Chemistry and Physics, 9, 5155-5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. 

He, G., Pan, Y., and Tanaka, T.: The short-term impacts of COVID-19 lockdown on urban air pollution 

in China, Nature Sustainability, 3, 1005-1011, https://doi.org/10.1038/s41893-020-0581-y, 2020. 

Huang, H., Zhang, J., Hu, H., Kong, S., Qi, S., and Liu, X.: On-road emissions of fine particles and 

associated chemical components from motor vehicles in Wuhan, China, Environmental Research, 210, 

112900, https://doi.org/10.1016/j.envres.2022.112900, 2022. 

Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, 

Nature, 409, 695-697, 10.1038/35055518, 2001. 

Jia, H., Huo, J., Fu, Q., Duan, Y., Lin, Y., Jin, X., Hu, X., and Cheng, J.: Insights into chemical 

composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze 

River Delta region, China during the COVID-19 outbreak control period, Environmental Pollution, 267, 

115612, https://doi.org/10.1016/j.envpol.2020.115612, 2020. 

Jia, H., Pan, J., Huo, J., Fu, Q., Duan, Y., Lin, Y., Hu, X., and Cheng, J.: Atmospheric black carbon in 

urban and traffic areas in Shanghai: Temporal variations, source characteristics, and population exposure, 

Environmental Pollution, 289, 117868, https://doi.org/10.1016/j.envpol.2021.117868, 2021. 

Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and Zhai, S.: A two-

pollutant strategy for improving ozone and particulate air quality in China, Nature Geoscience, 12, 906-

910, https://doi.org/10.1038/s41561-019-0464-x, 2019. 

Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P., Song, S., Lu, X., 

Zhang, Q., Zheng, B., Zhang, Y., Zhang, J., Lee, H. C., and Kuk, S. K.: Ozone pollution in the North 

China Plain spreading into the late-winter haze season, Proceedings of the National Academy of 

Sciences, 118, https://doi.org/e2015797118, 10.1073/pnas.2015797118, 2021. 

Lin, C., Huang, R.-J., Duan, J., Zhong, H., Xu, W., Wu, Y., and Zhang, R.: Large contribution from 

worship activities to the atmospheric soot particles in northwest China, Environmental Pollution, 299, 

118907, https://doi.org/10.1016/j.envpol.2022.118907, 2022a. 

Lin, C., Huang, R. J., Zhong, H., Duan, J., Wang, Z., Huang, W., and Xu, W.: Elucidating ozone and 

PM2.5 pollution in Fenwei Plain reveals the co-benefits of controlling precursor gas emissions in winter 

haze, EGUsphere, 2022, 1-15, https://doi.org/10.5194/egusphere-2022-1440, 2022b. 

Lin, C., Ceburnis, D., Xu, W., Heffernan, E., Hellebust, S., Gallagher, J., Huang, R. J., O'Dowd, C., and 

Ovadnevaite, J.: The impact of traffic on air quality in Ireland: insights from the simultaneous kerbside 

and suburban monitoring of submicron aerosols, Atmospheric Chemistry and Physics, 20, 10513-10529, 

https://doi.org/10.5194/acp-20-10513-2020, 2020. 

Lin, C., Huang, R.-J., Ceburnis, D., Buckley, P., Preissler, J., Wenger, J., Rinaldi, M., Facchini, M. C., 

O’Dowd, C., and Ovadnevaite, J.: Extreme air pollution from residential solid fuel burning, Nature 

Sustainability, 1, 512-517, https://doi.org/10.1038/s41893-018-0125-x, 2018. 

Liu, T., Wang, X., Hu, J., Wang, Q., An, J., Gong, K., Sun, J., Li, L., Qin, M., Li, J., Tian, J., Huang, Y., 

Liao, H., Zhou, M., Hu, Q., Yan, R., Wang, H., and Huang, C.: Driving Forces of Changes in Air Quality 

https://doi.org/10.5194/egusphere-2023-204
Preprint. Discussion started: 6 April 2023
c© Author(s) 2023. CC BY 4.0 License.



14 

 

during the COVID-19 Lockdown Period in the Yangtze River Delta Region, China, Environmental 

Science & Technology Letters, 7, 779-786, https://doi.org/10.1021/acs.estlett.0c00511, 2020. 

Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., Peng, S., Zhang, Q., Hubacek, K., Marland, 

G., Andres, R. J., Crawford-Brown, D., Lin, J., Zhao, H., Hong, C., Boden, T. A., Feng, K., Peters, G. 

P., Xi, F., Liu, J., Li, Y., Zhao, Y., Zeng, N., and He, K.: Reduced carbon emission estimates from fossil 

fuel combustion and cement production in China, Nature, 524, 335-338, 

https://doi.org/10.1038/nature14677, 2015. 

Lu, K., Fuchs, H., Hofzumahaus, A., Tan, Z., Wang, H., Zhang, L., Schmitt, S. H., Rohrer, F., Bohn, B., 

Broch, S., Dong, H., Gkatzelis, G. I., Hohaus, T., Holland, F., Li, X., Liu, Y., Liu, Y., Ma, X., Novelli, 

A., Schlag, P., Shao, M., Wu, Y., Wu, Z., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A., and Zhang, 

Y.: Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies, 

Environmental Science & Technology, 53, 10676-10684, https://doi.org/10.1021/acs.est.9b02422, 2019. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., 

Bansal, N., and Lee, S.-I.: From local explanations to global understanding with explainable AI for trees, 

Nature Machine Intelligence, 2, 56-67, https://doi.org/10.1038/s42256-019-0138-9, 2020. 

Lyu, X., Guo, H., Zou, Q., Li, K., Xiong, E., Zhou, B., Guo, P., Jiang, F., and Tian, X.: Evidence for 

Reducing Volatile Organic Compounds to Improve Air Quality from Concurrent Observations and In 

Situ Simulations at 10 Stations in Eastern China, Environmental Science & Technology, 

https://doi.org/10.1021/acs.est.2c04340, 2022. 

https://www.ceicdata.com/en/china/no-of-motor-vehicle-private-owned/cn-no-of-motor-vehicle-

private-owned-shanghai (Last Access: 5 August 2022), last. 

Oukawa, G. Y., Krecl, P., and Targino, A. C.: Fine-scale modeling of the urban heat island: A comparison 

of multiple linear regression and random forest approaches, Science of The Total Environment, 815, 

152836, https://doi.org/10.1016/j.scitotenv.2021.152836, 2022. 

Qin, X., Zhou, S., Li, H., Wang, G., Wang, X., Fu, Q., Duan, Y., Lin, Y., Huo, J., Huang, K., and Deng, 

C.: Simulation of Spatiotemporal Trends of Gaseous Elemental Mercury in the Yangtze River Delta of 

Eastern China by an Artificial Neural Network, Environmental Science & Technology Letters, 9, 205-

211, https://doi.org/10.1021/acs.estlett.1c01025, 2022. 

Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nature 

Geoscience, 1, 221, https://doi.org/10.1038/ngeo156, 2008. 

Rappazzo, K. M., Daniels, J. L., Messer, L. C., Poole, C., and Lobdell, D. T.: Exposure to Elemental 

Carbon, Organic Carbon, Nitrate, and Sulfate Fractions of Fine Particulate Matter and Risk of Preterm 

Birth in New Jersey, Ohio, and Pennsylvania (2000-2005), Environmental Health Perspectives, 123, 

1059-1065, https://doi.org/10.1289/ehp.1408953, 2015. 

Shi, Z., Song, C., Liu, B., Lu, G., Xu, J., Vu, T. V., Elliott, R. J. R., Li, W., Bloss, W. J., and Harrison, 

R. M.: Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 

lockdowns, Science Advances, 7, eabd6696, https://doi.org/10.1126/sciadv.abd6696, 2021. 

Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R. M.: Assessing the impact of 

clean air action on air quality trends in Beijing using a machine learning technique, Atmospheric 

Chemistry and Physics, 19, 11303-11314, https://doi.org/10.5194/acp-19-11303-2019, 2019. 

https://doi.org/10.5194/egusphere-2023-204
Preprint. Discussion started: 6 April 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

Wang, J., Wu, Q., Liu, J., Yang, H., Yin, M., Chen, S., Guo, P., Ren, J., Luo, X., Linghu, W., and Huang, 

Q.: Vehicle emission and atmospheric pollution in China: problems, progress, and prospects, PeerJ, 7, 

e6932-e6932, https://doi.org/10.7717/peerj.6932, 2019. 

Wang, M., Duan, Y., Zhang, Z., Huo, J., Huang, Y., Fu, Q., Wang, T., Cao, J., and Lee, S.-c.: Increased 

contribution to PM2.5 from traffic-influenced road dust in Shanghai over recent years and predictable 

future, Environmental Pollution, 313, 120119, https://doi.org/10.1016/j.envpol.2022.120119, 2022a. 

Wang, M., Zhang, Z., Yuan, Q., Li, X., Han, S., Lam, Y., Cui, L., Huang, Y., Cao, J., and Lee, S.-c.: 

Slower than expected reduction in annual PM2.5 in Xi'an revealed by machine learning-based 

meteorological normalization, Science of The Total Environment, 841, 156740, 

https://doi.org/10.1016/j.scitotenv.2022.156740, 2022b. 

Wang, Y., Wen, Y., Wang, Y., Zhang, S., Zhang, K. M., Zheng, H., Xing, J., Wu, Y., and Hao, J.: Four-

Month Changes in Air Quality during and after the COVID-19 Lockdown in Six Megacities in China, 

Environmental Science & Technology Letters, 7, 802-808, https://doi.org/10.1021/acs.estlett.0c00605, 

2020. 

Wu, C.-L., Wang, H.-W., Cai, W.-J., He, H.-d., Ni, A.-N., and Peng, Z.-R.: Impact of the COVID-19 

lockdown on roadside traffic-related air pollution in Shanghai, China, Building and environment, 194, 

107718-107718, https://doi.org/10.1016/j.buildenv.2021.107718, 2021. 

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, 

Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, 

C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, 

K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, Proc. Natl. Acad. 

Sci., 116, 24463-24469, https://doi.org/10.1073/pnas.1907956116, 2019. 

Zhao, Y., Zhang, K., Xu, X., Shen, H., Zhu, X., Zhang, Y., Hu, Y., and Shen, G.: Substantial changes in 

nitrate oxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in 

mainland China, Environmental Science & Technology Letters, 402-408, 

https://doi.org/10.1021/acs.estlett.0c00304, 2020. 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, 

Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 

as the consequence of clean air actions, Atmospheric Chemistry and Physics, 18, 14095-14111, 

https://doi.org/10.5194/acp-18-14095-2018, 2018. 

Zhou, H., Lin, J., Shen, Y., Deng, F., Gao, Y., Liu, Y., Dong, H., Zhang, Y., Sun, Q., Fang, J., Tang, S., 

Wang, Y., Du, Y., Cui, L., Ruan, S., Kong, F., Liu, Z., and Li, T.: Personal black carbon exposure and 

its determinants among elderly adults in urban China, Environment International, 138, 105607, 

https://doi.org/10.1016/j.envint.2020.105607, 2020. 

 

 

https://doi.org/10.5194/egusphere-2023-204
Preprint. Discussion started: 6 April 2023
c© Author(s) 2023. CC BY 4.0 License.



16 

 

 

 

 

Figure 1. (a) Time series (day of the year; DOY) of the measured NOx for 4 weeks before and after the start 

of the Chinese Lunar year for the mean of 2016-2019 and 2020; and (b) Mean NOx concentrations for different 

periods, i.e., before the holiday, holiday, transition and lockdown. The time series in (a) was a 7-day rolling 

average. The error bar in (b) stands for one standard deviation. Note that the lunar DOY for 2016-2019 was 

on different Gregorian date, but were grouped together based on lunar DOY in (a). 
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Figure 2. (a) Time series (day of the year; DOY) of the measured EC for 4 weeks before and after the start of 

the Chinese Lunar year for the mean of 2016-2019 and 2020; and (b) Mean EC concentrations for different 

periods, i.e., before the holiday, holiday, transition and lockdown. The time series in (a) was a 7-day rolling 

average. The error bar in (b) stands for one standard deviation. 
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Figure 3. Scatter plot between the predicted and measured (a) NOx and (b) EC for the testing and training 

dataset. Also shown is the linear regression between the predicted and measured values, with the correlation 

coefficient (R) and p-value in the top left. 
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Figure 4. SHAP values (in μg m-3) for the meteorological variables i.e., features when building the random 

forest model for NOx and EC. 
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Figure 5. Comparison of NOx (a) and EC (b) evolution between the business-as-usual (BAU) scenario and the 

measured one in 2020. All concentrations were normalized to the level before the holiday. 
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Figure 6. The spatial distribution of TROPOMI NO2 over the same period in 2019 and 2020 near the DSL 

sampling site in west Shanghai in the YRD region. 
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